Oxidation of Silyl Enol Ethers Using 2-Sulfonyloxaziridines. Synthesis of α -Siloxy Epoxides and α -Hydroxy Carbonyl Compounds

Summary: The first isolation and detection of α -siloxy epoxides 2 in the oxidation of silyl enol ethers 1 to α -hydroxy carbonyl compounds 4 (Rubottom reaction) by 2-sulfonyloxaziridine 5 is described. Asymmetric oxidation of silyl enol ethers by (+)-(R,R)-6 affords optically active α -hydroxy carbonyl compounds.

Sir: The Rubottom reaction, the peracid oxidation of silyl enol ethers 1, is a widely used method for the synthesis of α -hydroxy carbonyl compounds 4 (Scheme I).¹ The initially isolated α -trimethylsiloxy carbonyl compounds 3 are thought to be formed via an acid-catalyzed rearrangement of an intermediate siloxy epoxide, 2 (Scheme I). However, all attempts to isolate or even detect α -siloxy epoxides 2 have been unsuccessful to date.^{1,2}

In connection with our interest in the synthesis of α -hydroxy carbonyl compounds,⁴ we have explored the oxidation of silyl enol ethers 1 using 2-(phenylsulfonyl)-3-(*p*-nitrophenyl)oxaziridine (5), an aprotic and neutral oxidizing reagent.⁵ In this communication we describe the first detection and isolation of α -siloxy epoxides 2 as well as general methodology for the synthesis of α -hydroxy carbonyl compounds 4 under mild conditions.

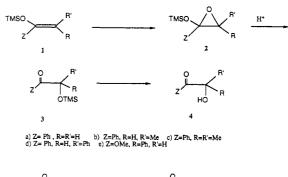
Silyl enol ethers⁶ (typically 0.6 mmol) dissolved in 5 mL of acid free chloroform⁹ were oxidized with 1 equiv of oxaziridine 5 dissolved in 10 mL of CHCl₃ in an inert atmosphere. When the oxidation was complete, as determined by the disappearance of the oxaziridine proton at δ 5.6, the solvent was removed and the residue extracted with 5 × 5 mL portions of *n*-pentane. After filtration and removal of the solvent the reaction mixture was hydrolyzed by treatment with HF/MeCN,¹⁰ Bu4NF/THF, or 5% HCl/THF, and 4 was isolated by preparative TLC eluting with *n*-pentane/ether or ether/dichloromethane. Products were identified by comparison with authentic samples. These results are summarized in the Table I.

In the course of monitoring the oxidation of 1c by NMR in acid-free $CDCl_3$,⁹ we noted the quantitative formation

(2) Brook reported the detection of a heterocyclic α-siloxy epoxide, but gave no details.^{1b} Addition of siloxycarbenes to carbonyl compounds is reported to give an unstable heterocyclic α-siloxy epoxides.³
 (3) Brook, A. G.; Pearce, R.; Pierce, J. B. Can. J. Chem. 1971, 49, 1622.

(3) Brook, A. G.; Pearce, R.; Pierce, J. B. Can. J. Chem. 1971, 49, 1622.
(4) (a) Davis, F. A.; Vishwakarma, L. C. Tetrahedron Lett. 1985, 26, 3539. (b) Davis, F. A.; Vishwakarma, L. C. J. Org. Chem. 1984, 49, 3241.
(c) Davis, F. A.; Haque, M. S.; Ulatowski, T. G.; Towson, J. C. J. Org. Chem. 1986, 51, 2402. (d) Davis, F. A.; Hague, M. S. J. Org. Chem. 1986, 51, 4083.

(5) Davis, F. A.; Stringer, O. D. J. Org. Chem. 1982, 47, 1774.


(6) Silyl enol ethers la-d' were prepared as previously described. Silyl ketene acetal 1e was obtained by using a modification of the procedure reported by Ireland et. al.⁸ THF was used in place of HMPA to dissolve the *t*-BuMe₂SiCl. The Z/E ratio obtained for 1e was 21/79, which differs from that reported previously, 71/29, obtained under Ireland's conditions.⁸

(7) Cazeau, P.; Moulines, F.; Laporte, O.; Duboudin, F. J. Organomet. Chem. 1980, 201, C9-C13.
(8) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc.

(8) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868.

(9) Chloroform was filtered through basic alumina or treated with Na_2CO_3 prior to use.

(10) Jones, T. K.; Denmark, S. E. J. Org. Chem. 1985, 50, 4037.

Scheme I

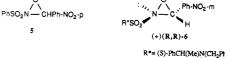
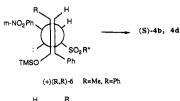


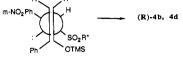
Table I. Oxidation of Silyl Enol Ethers to α-Hydroxy Carbonyl Compounds Using 2-Sulfonyloxaziridines in Chloroform

Chloroform						
entry	silyl enol ether (1)	temp, °C (time, h)	hydrolysis method	% yield (4) ^a		
1	OTMS	60 (3)	5% HCl/THF	65 ^{b,c}		
	\bigcirc	60 (0.5)	5% HCl/THF	51		
2	Ph	60 (3)	5% HCl/THF	65 ^{c,d}		
3	1a 1a	60 (3)	HF/MeCN	55		
4	OTMS	25 (17)	5% HCl/THF	80 ^e		
	1b					
5	1b	60 (1)	5% HCl/THF	81		
6	1 b	60 (1)	Bu_4NF/THF	41		
7		25 (4.5)	Bu_4NF/THF	79 [/]		
8	1c	60 (1)	Bu₄NF/THF	75		
9	OTMS Ph	60 (7.5)	HF/MeCN	98		
	1 d					
10	1 d	60 (7.5)	${ m Bu_4NF}/{ m THF^g}$			
11	Ph OTBDS OMe	25 (0.1)	5% HCl/THF	54^i		
	1e					

^a Isolated yield of pure material (>98%). ^bReference 1a. ^cGLC yield using a 6 ft × $^{1}/_{4}$ in., Ov-17 on 90/100 mesh Sulpelcoport column. ^dReference 1a. ^eReference 20. ^fReference 1a. ^gOveroxidation to benzoin observed. ^bReference 1h. ⁱReference 4b.

Table II. Comparison of Proton Chemical (δ) Shifts of						
Siloxy Epoxides 2, α -Siloxy Carbonyls 3, and Epoxides 7						
$(CDCl_{2})$						


(00013)						
(R', R)	2	3	7			
b ($R = H, R' = Me$)	1.44 (d), 2.96 (q)	1.49 (d), 5.04 (q)	1.44 (d), 3.02 (m)			
$\mathbf{c} \ (\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e})$	1.0 (s), 1.50 (s)	1.58 (s)	1.08 (s), 1.49 (s)			
$\mathbf{d} \ (\mathbf{R} = \mathbf{H}, \mathbf{R}' = \mathbf{P}\mathbf{h})$	3.83 (s)	5.84 (s)	3.85 (s)			


of a new species identified as the elusive α -siloxy epoxide 2c. That this new species is indeed 2c is based on the fact that its ¹H spectrum is nearly identical with 1-phenyl-2methylpropene oxide (7c)¹¹⁻¹³ (Table II). The IR and ¹³C

0022-3263/87/1952-0954\$01.50/0 © 1987 American Chemical Society

 ⁽a) Rubottom, G. M., Vazquez, M. A., Pelegrina, D. R., Tetrahedron Lett. 1974, 4319.
 (b) Brook, A. G., MaCrae, O. M. J. Organomet. Chem. 1974, 77, C19.
 (c) Hassner, A.; Reuss, R. H.; Pinnick, H. W., J. Org. Chem. 1975, 40, 3427.
 (d) Rubottom, G. M., Gruber, J. M. J. Org. Chem. 1978, 43, 1599.
 (e) Hanzlik, R. P.; Hilbert, J. M. J. Org. Chem. 1978, 43, 610.
 (f) Boeckman, R. K., Jr., Ramaiah, M. J. Org. Chem. 1977, 42, 1581.
 (g) Rubottom, G. M.; Gruber, J. M.; Boeckman, R. K., Jr., Ramaiah, M.; Medwid, J. B. Tetrahedron Lett. 1978, 4603.
 (h) Rubottom, G. M.; Org. Chem. 1975, 40, 378.
 (i) McCornick, J. P.; Tomasik, W.; Johnson, M. W. Tetrahedron Lett. 1981, 22, 607.

Scheme II

NMR spectra of 2c are also consistent with the proposed structure.¹⁴ Furthermore, addition of a trace of ptoluenesulfonic acid to 2c resulted in its immediate and quantitative rearrangement to α -siloxy ketone 3c.^{1a} At 60 °C, in the absence of acid, the rearrangement of 2c to 3c also appeared to be accelerated. α -Siloxy epoxide 2c proved to be surprisingly stable when the oxidation was carried out in anhydrous THF (16 h, 25 °C) and was isolated in greater than 90% yield, as an oil, by extraction into *n*-pentane. α -Siloxy epoxides 2b and 2d were also observed by NMR, but were much less stable, rearranging within 1–8 h to α -siloxy ketones 3b and 3d, respectively (Table II).

Asymmetric oxidation of silvl enol ethers 1b and 1d at 60 °C by chiral sulfamyloxaziridine (+)-(R,R)- 6^{15} gave, after standard workup, optically active α -hydroxy ketones (-)-(S)-4b and (+)-(S)-4d, in 7.5% and 11.0% ee and 31% and 62% isolate yields, respectively.¹⁶ In analogy with the epoxidation of alkenes by chiral 2-sulfonyloxaziridines. an open transition state having planar geometry is predicted for the reaction of silvl enol ethers with (+)-(R,R)-6 (Scheme II).¹⁹ The relatively low enantioselectivities obtained in these asymmetric oxidations are understandable considering that the steric difference for reaction of (+)-(R,R)-6 at the re and si faces of the silvl enol ethers is minimal (Scheme II).

In summary, the first isolation and characterization of the elusive α -siloxy epoxides 2 in the Rubottom reaction (Scheme I) is described. We attributed our ability to isolate these labile species to the use of 2-sulfonyloxaziridine 5, an aprotic and neutral oxidizing reagent. On hydrolysis α -siloxy epoxides 2 afford good to excellent yields of α -hydroxy ketones 4. In the synthesis of complex polyfunctionalized molecules that require the Rubottom reaction the use of 2-sulfonyloxaziridine 5 is indicated.

Tetrahedron Lett. 1981, 22, 917. (14) ¹³C NMR (C₆D₆) 2c: δ 1.84 (TMS), 20.53 (Me₂), 65.93 (CMe₂), 89.12 (PhC[O]OTMS), 127.53–139.93 (Ph); IR (Nujol) 1250 cm⁻¹ (COC). 3c: δ 2.52 (TMS), 29.66 (Me₂), 81.44 (C(OTMS)Me₂), 123.62-136.29 (Ph), [O]), 134.52–145.68 (Ph); IR (neat)¹² 1250 and 910 cm⁻¹.

- (15) (+)-(R,R)-6 was prepared as previously described: Davis, F. A.; McCauley, J. P., Jr.; Harakal, M. E. J. Org. Chem. 1984, 49, 1465. Additional details will be published elsewhere. (16) The optical purities of (-)-(S)-4b¹⁷ and (+)-(S)-4d¹⁸ were deter-
- mined by comparision of the optical rotations with authentic samples.

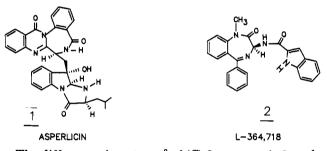
(17) Konishi, J.; Ohta, H.; Tsuchihashi, G.-i., Chem. Lett. 1985, 1111 and references cited therein.

(18) (-)-(S)-2-Hydroxy-1-phenylpropanone (4b) was prepared optically pure by reaction of the 1,3-dioxlanone of (-)-(S)-lactic acid with phe-nyllithium at -78 °C: $[\alpha]_D$ -86.7 (c 2, CHCl₃).^{4d} (19) Davis, F. A.; Harakal, M. E.; Awad, S. B. J. Am. Chem. Soc. 1983,

105, 3123. Davis, F. A.; Chattopadhyay, S. Tetrahedron Lett. 1986, 27, 5079

(20) Harada, K.; Shiono, S. Bull. Chem. Soc. Jpn. 1984, 51, 1040.

Acknowledgment. We thank Professors Scott Denmark (U. of Illinois) and Eric Block (SUNY Albany) for helpful discussions. This work was supported by the National Science Foundation (CHE 8502076).


Franklin A. Davis,* Aurelia C. Sheppard

Department of Chemistry Drexel University Philadelphia, Pennsylvania 19104 Received August 1, 1986

Crystallization-Induced Asymmetric Transformation: Stereospecific Synthesis of a **Potent Peripheral CCK Antagonist**

Summary: An efficient, catalytic method for the total conversion of a racemate into a single enantiomer is reported. The combined, in situ resolution-racemization was applied to 3(RS)-amino-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one to produce the optically pure S enantiomer in 91% yield. Acylation with indole-2carboxylic acid produced L-364,718, an extremely potent nonpeptidal peripheral CCK antagonist.

Sir: The recent isolation of asperlicin $(1)^1$ and its identification as a selective antagonist of the gastrointestinal hormone cholecystokinin (CCK) has spawned great activity in this area.² Asperlicin's lack of oral bioavailability, modest potency, and poor water solubility make it unattractive as a potential therapeutic agent. Thus, a search for a better antagonist, either semisynthetic or synthetic, was undertaken.³ The result was an extremely potent nonpeptidal CCK antagonist with high selectivity for peripheral tissue: L-364,718 (2).^{3,4}

The differences in potency³ of (S)-2 vs. racemic 2 made it desirable to use the optically pure antagonist as the drug candidate. Thus, a practical asymmetric synthesis was required to permit clinical trials. This paper describes the synthesis of 3(S)-amino-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one [(S)-3], the key intermediate for the preparation of L-364,718 (2), via an efficient, catalytic, one-pot resolution-racemization sequence which renders alternate methods of asymmetric synthesis moot (Scheme I).

© 1987 American Chemical Society

⁽¹¹⁾ A sample of 7c¹² was prepared in 87% isolated yeild by heating the alkene at 60 °C with oxaziridine 5 for 18 h as previously reported.¹³
(12) Puterbaugh, W. H.; Hauser, C. R. J. Am. Chem., Soc. 1964, 86, 1394.

⁽¹³⁾ Davis, F. A.; Abdul-Malik, N. F.; Awad, S. B.; Harakal, M. E

^{(1) (}a) Goetz, M. A.; Lopez, M.; Monaghan, R. L.; Chang, R. S. L.; Lotti, V. J.; Chen, T. B. J. Antibiot. 1985, 38, 1633. (b) Liesch, J. M.; Hensens, O. D.; Springer, J. P.; Chang, R. S. L.; Lotti, V. J. J. Antibiot. 1985, 38, 1638. (c) Chang, R. S. L.; Lotti, V. J.; Monaghan, R. L.; Birnbaum, J.; Stapley, E. O.; Goetz, M. A.; Albers-Schonberg, G.; Patchett, . A.; Liesch, J. M.; Hensens, O. D.; Springer, J. P. Science (Washington, D. C.) 1985, 230, 17

⁽²⁾ Albers-Schonberg, G.; Chang, R. S. L.; Lotti, V. J.; Chen, T. B.; Monaghan, R. L.; Birnbaum, J.; Stapley, E. O.; Goetz, M. A.; Lopez, M.; Patchett, A. A.; Liesch, J. M.; Hensens, O. D.; Springer, J. P. In Pro-ceedings of the Ninth American Peptide Symposium Deber, C. M., Hruby, V. J., Kopple, K. D., Eds.; Pierce Chemical Co.: Rockford, IL, 1985; pp 565-574

Evans, B. E.; Bock, M. G.; Rittle, K. E.; DiPardo, R. M.; Whitter,
 W. L.; Veber, D. F.; Anderson, P. S.; Freidinger, R. M. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 4918.